C2OI

High-Efficiency 'Receiverless' Optical Interconnects

Objective

Develop novel, high-efficiency, highpower, and high-speed transmitter and receiver modules to minimize additional support electronics in chip-to-chip optical interconnects

Unique features

- Transmitter: Small footprint integrated laser-modulator; high-κ grating; 45-degree facet for vertical; backside microlenses; quantum-well intermixing(QWI) for multiple-bandgaps
 Receiver: Digital receiver architecture; high-
- Receiver: Digital receiver architecture; high saturation power PDA photodetector design; crosstalk shielding

Approach

- Design & simulate transmitter and reciever modules
- Refine new technologies such as QWI,
 45-degree facets, microlenses, air-bridge contacts, and shielding
- Fabricate & test device arrays
- Provide samples to industrial collaborators.
- Re-spin designs to respond to system's needs; fabricate & deliver new modules

Milestones—Phase I

- Design and simulate to verify powerbudget and other aspects6 mo.
- Demo high-efficiency, high-power
 laser-mod and photodetectors
 15 mo.
- Demo module arrays and deliversamples18 mo.

Interconnect architecture

Criteria/Concepts

Criteria

- Support data rates up to 40 Gbs
- Small footprint and low power dissipation

Concepts

- Avoid additional driver/receiver electronics
- Use integrated in-plane laser-modulator at ~ 980 nm to get bandwidth and power required at high efficiency
- Use high saturation power photodetector to <u>directly</u> drive logic (or same Si receiver as used for electrical interconnects)

C2OI

Technical Approach: Transmitter

- Single-regrowth, small-footprint integrated DBR-laser--EAmodulator design
- High-κ grating to minimize footprint and loss
- 45-degree facet for vertical emission and no reflections
- Backside microlenses
- Quantum-well intermixing(QWI) for multiple-bandgaps to simultaneously optimize laser, grating, and modulator sections

GaAs Substrate

Technical Approach: Receiver

- Digital receiver architecture to eliminate receiver electronics and associated latency, noise and dissipated power
- High-saturation-power PDA photodetector design to deliver high currents at high bandwidths
- Air-bridge contacts for low stray capacitance
- Crosstalk shielding to eliminate effect of stray light

Past Work: transmitters

Active-Passive Integration

Modulators

Quantum-well intermixing

VCSELs/Microlenses

Active-passive integration

Commerical SGDBR-SOA-EAM

Single-chip integrated tunable laser and modulator

Lumped EAM modulator performance

≻Typical bandwidth measurement for a lumped 250μm long device

Traveling-wave EAM

Quantum Well Intermixing

Impurity-free vacancy-enhanced quantum-well-intermixing

Theory

- Create vacancies
- Thermal process to diffuse vacancies
- Diffusing vacancies allow atoms to exchange positions
- Smears the well/barrier interface, increasing the quantized energy level

Methods

lon implantation, sputtering

 Rapid thermal anneal, laser induced

QWI-SGDBR with Integrated EA-Modulator (3 bandgaps)

- Optimized band edges for various devices
- Three band edges across wafer
- Widely-tunable laser/EAM

QWI-SGDBR-EAM Transmitter Results

VCSELs for Optical Interconnects

- Prior work has demonstrated state-ofthe-art VCSELs and RC-PDs for freespace interconnects
- Microlenses eliminate or relax tolerances on external optics
- Error-free links from 0 90C

980 nm VCSEL P-I-V & Power efficiency

- Thresholds of 125 μA for 0.6 μm devices
- Optical losses almost eliminated with tapered apertures at the 1st null
- Wall-plug of 30% at 1mW output power

Progress on C20I

Transmitter:

- Waveguide design work nearing completion--initial laser optimization studies initiated
- QWI for AI-free actives on GaAs initiated--experimental work begun
- Laser-modulator axial design work initiated—need data for intermixed EAMs

Receiver:

- Digital receiver architecture investigation begun
- First generation high-saturation-power PDA photodetector design complete
- Initial demonstration of concept completed.

C20I Transmitter Design: Current and Temp rise for Constant Powers

Required current (solid) and Temperature Rise (dotted) vs. Front Mirror Reflectivity for L_q = 20 μm

Design Curves for W = $2\mu m$, N_{qw} = 3, R_b = 90%, η_i = 90%, α_{ia} = α_{im} = 5cm⁻¹, Γg_o = 50cm⁻¹

DBR Mirror Design

Red indicates designs for SMSR>=30dB For increasing kappa 50:100:950 cm⁻¹

GaAs Lattice-Matched Bandgaps

- Offsets in blue #s to GaAs
- Bandgaps in black
- Units are meV

Offsets to GaAs

$$In_{.2}Ga_{.8}As \Delta E_C = .628 \Delta E_q$$

$$ln_{.2}Ga_{.8}As_{.6}P_{.4} \Delta E_{C} = .2 \Delta E_{q}$$

$$In_{.485}Ga_{.515}P \Delta E_{C} = .35 \Delta E_{q}$$

$$AI_{.80}Ga_{.20}As \Delta E_C = .65 \Delta E_g$$

C2OI

Active Region Designs

C20I 2D Mode Solver Simulations

Optimize Waveguide Thickness

Design #1, 3 QWs, 2.0µm ridge 75Å Wells, 80Å Barriers Top and Bottom Half of WG = 700Å each

Waveguide Thickness [A]

Future QWI Process

P⁺ Implant into 4500A InGaP sacrificial layer.

RTA to drive vacancies into Active Region to intermix quantum wells.

Etch off sacrificial layer.

Regrow top cladding.

Milestones

Transmitter (UCSB):

 Design & simulate small footprint IPSEL-Mod 	6 mo.
• Demo laser-mod ($P_o > 10 \text{ mW}$; $f_c > 15 \text{ GHz}$)	15 mo.
 Demo 4-element array module and deliver samples 	18 mo.
 Demo efficient 40Gb/s IPSEL-Mod array module 	
and deliver samples	36 mo.

Receiver (UT-Austin):

besign & simulate i DA and digital receiver	o ilio.
• Demo PDA (P_{sat} > 10 mW; f_c > 40 GHz)	15 mo.
 Demo 4-element array module and deliver samples 	18 mo.
 Demo efficient 40Gb/s digital receiver array module 	
and deliver samples	36 mo.

• Design & simulate PDA and digital receiver

6 ma